High-yield production of a bacterial xylanase in the filamentous fungus Trichoderma reesei requires a carrier polypeptide with an intact domain structure.
نویسندگان
چکیده
A bacterial xylanase gene, Nonomuraea flexuosa xyn11A, was expressed in the filamentous fungus Trichoderma reesei from the strong cellobiohydrolase 1 promoter as fusions to a variety of carrier polypeptides. By using single-copy isogenic transformants, it was shown that production of this xylanase was clearly increased (up to 820 mg/liter) when it was produced as a fusion protein with a carrier polypeptide having an intact domain structure compared to the production (150 to 300 mg/liter) of fusions to the signal sequence alone or to carriers having incomplete domain structures. The carriers tested were the T. reesei mannanase I (Man5A, or MANI) core-hinge and a fragment thereof and the cellulose binding domain of T. reesei cellobiohydrolase II (Cel6A, or CBHII) with and without the hinge region(s) and a fragment thereof. The flexible hinge region was shown to have a positive effect on both the production of Xyn11A and the efficiency of cleavage of the fusion polypeptide. The recombinant Xyn11A produced had properties similar to those of the native xylanase. It constituted 6 to 10% of the total proteins secreted by the transformants. About three times more of the Man5A core-hinge carrier polypeptide than of the recombinant Xyn11A was observed. Even in the best Xyn11A producers, the levels of the fusion mRNAs were only approximately 10% of the level of cel7A (cbh1) mRNA in the untransformed host strain.
منابع مشابه
A novel transcription factor specifically regulates GH11 xylanase genes in Trichoderma reesei
BACKGROUND The filamentous fungus Trichoderma reesei is widely utilized in industry for cellulase production, but its xylanase activity must be improved to enhance the accessibility of lignocellulose to cellulases. Several transcription factors play important roles in this progress; however, nearly all the reported transcription factors typically target both cellulase and hemi-cellulase genes. ...
متن کاملEnabling low cost biopharmaceuticals: high level interferon alpha-2b production in Trichoderma reesei
BACKGROUND The filamentous fungus Trichoderma reesei has tremendous capability to secrete over 100 g/L of proteins and therefore it would make an excellent host system for production of high levels of therapeutic proteins at low cost. We have developed T. reesei strains suitable for production of therapeutic proteins by reducing the secreted protease activity. Protease activity has been the maj...
متن کاملACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei.
A novel yeast-based method to isolate transcriptional activators was applied to clone regulators binding to the cellulase promoter cbh1 of the filamentous fungus Trichoderma reesei (Hypocrea jecorina). This led to the isolation of the cellulase activator ace2 encoding for a protein belonging to the class of zinc binuclear cluster proteins found exclusively in fungi. The DNA-binding domain of AC...
متن کاملCellulase Production by Trichoderma reesei using Sugar Beet Pulp
Cellulase production by the fungus Trichoderma reesei was studied using sugar beet pulp (SBP) as a substrate. The subculture medium was a salt solution consisting of KH2PO4, CaCl2, etc. Fungal cells were sub-cultured in an orbital shaker (180 rpm) at 30°C for 1-2 generations (two days for each generation) and were then used as an inoculum. Exponential cells were inoculated into a medium contain...
متن کاملCharacterization and Strain Improvement of a Hypercellulytic Variant, Trichoderma reesei SN1, by Genetic Engineering for Optimized Cellulase Production in Biomass Conversion Improvement
The filamentous fungus Trichoderma reesei is a widely used strain for cellulolytic enzyme production. A hypercellulolytic T. reesei variant SN1 was identified in this study and found to be different from the well-known cellulase producers QM9414 and RUT-C30. The cellulose-degrading enzymes of T. reesei SN1 show higher endoglucanase (EG) activity but lower β-glucosidase (BGL) activity than those...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 69 12 شماره
صفحات -
تاریخ انتشار 2003